

Available online at www.sciencedirect.com

Tetrahedron Letters 45 (2004) 7823-7826

Tetrahedron Letters

trans-2-Aminocyclohexanols as pH-triggers for conformationally controlled crowns and podands $\stackrel{\leftrightarrow}{\sim}$

Vyacheslav V. Samoshin,^{a,*} Vyacheslav A. Chertkov,^b Dmitriy E. Gremyachinskiy,^a Elena K. Dobretsova,^a Alla K. Shestakova^c and Lidia P. Vatlina^d

^aLomonosov Moscow State Academy of Fine Chemical Technology, Vernadsky Prospect 86, Moscow 117571, Russia ^bLomonosov Moscow State University, Department of Chemistry, Moscow 119899, Russia

^cState Research Institute of Chemistry and Technology of Organoelement Compounds, Moscow 111123, Russia ^dUshinsky Yaroslavl State Pedagogic University, Yaroslavl 150000, Russia

Received 19 August 2004; accepted 1 September 2004

Abstract—Protonation of *trans*-2-aminocyclohexanols leads to dramatic conformational changes: due to an intramolecular hydrogen bond a conformer with equatorial position of ammonio- and hydroxy-groups becomes predominant. The *trans*-2-aminocyclohexanol moiety has been used for pH-induced conformational switching of a crown ether and a podand. © 2004 Elsevier Ltd. All rights reserved.

Conformational control via introduction of various substituent(s) into *trans*-fused six-membered cycle was proposed by us as a new principle for modification of the complexing ability of (cyclohexano)crown compounds and non-cyclic ionophores (podands).^{1–20} In these structures, a substituent plays a role of 'conformational lever', and the cyclohexane moiety is a mechanical transmitter. The cyclohexane moiety is a mechanical transmitter. The cyclohexane mechanism can also imitate allosteric effect by transmitting a conformational change from one binding site (macroheterocycle or podand) to another (Scheme 1).^{1,9,10,14,17–20} These ideas were later successfully explored also by other researchers,^{21–25} and were expanded to decaline and perhydroanthracene derivatives.^{26–30}

Scheme 1.

Keywords: *trans*-2-Aminocyclohexanol; pH-switch; Cyclohexano crown ether; Conformations.

[☆]See Ref. 1.

* Corresponding author at present address: Department of Chemistry, University of the Pacific, Stockton, CA 95211, USA. Tel.: +1 209 946 2921; fax: +1 209 946 2607; e-mail: vsamoshin@pacific.edu

0040-4039/\$ - see front matter © 2004 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2004.09.004

A change of non-bonded interactions between groups X and Y (and/or W and Z) by external influence, for example, by interaction with a guest S, should change the relative stability of conformers. By affecting these interactions one can control the position of conformational equilibrium of the type $1A \rightleftharpoons 1B$, thus controlling the complexing ability of the macrocycle or podand. Two carboxylic groups (X = Y = COOH) provide a promising model for this mechanism.¹⁷ Their ionization under the action of base eliminates possible gaucheattraction caused by mutual hydrogen bonding and gives rise to a strong electrostatic gauche-repulsion leading to conformational shift $1A \rightarrow 1B$. Protonation of the dianion returns the system to its original position. The power of such a conformational trigger was estimated experimentally as $\geq 10 \text{ kJ/mol.}^{17}$

Another promising type of a conformational pH-trigger is provided by *trans*-2-aminocyclohexanol moiety. We found previously¹⁸ that compound 2 adopted

Scheme 3.

Scheme 4. Synthesis of compounds 4–6: (a) *m*-ClC₆H₄CO₃H, rt; (b) piperidine/H₂O/*i*-PrOH, rt, 56%, 44% and 54% for 4, 5 and 6, respectively; (c) Me(OCH₂CH₂O)₃OH, Py, reflux in PhMe, 63%; (d) tetraethyleneglycol, Py, reflux in PhMe, 38%.^{12,13}

predominantly the conformation **2A** in CDCl₃, but the conformation **2B** in methanol or DMSO (Scheme 2).

This dramatic change, which exceeded 10 kJ/mol in terms of the relative conformational stability, was attributed to destruction of the stabilizing intramolecular hydrogen bond OH···N in **2A** by the solvents hydrogen bond acceptors.¹⁸ Another way to control such a conformational equilibrium would be an addition of acid to protonate the amino group, and to generate the possibly stronger intramolecular hydrogen bond of $HO \cdots H-N^+$ type (Scheme 3). This bond would stabilize conformation **3A**, thus moving the groups **R** away from each other, and decreasing their ability to interact with another molecule or ion, for example, to form complexes like **1B**. The hydrogen bonds of both types are known to convert a chair ring into a twist conformation in aminohydroxy steroids.^{31,32}

To explore this option, we synthesized compounds **4–6** (Scheme 4), and evaluated their conformational behaviour in various conditions.

Free energy differences between conformers (ΔG_{B-A}) were estimated by ¹H NMR measurements in CD₃OD solutions (Varian VXR-400; 400 MHz) (Table 1). The conformer populations (n_A , n_B) were determined using Eliel's equation³³ for signal widths ($W = \sum J_{HH}$) of the cyclohexane protons H₁, H₂, H₄ and H₅, measured as a distance between terminal peaks of a multiplet: $W_{observed} = W_A n_A + W_B n_B$. The signal widths for individual conformers were estimated from measurements for compounds **4–6** and for closely related cyclohexane derivatives with completely biased conformational equilibrium:^{14–18} $W_A = 25.7$ Hz and $W_B = 9$ Hz for H_{OH}, $W_A = 26.6$ Hz and $W_B = 10$ Hz for H_{NR'2}, and $W_A = 9$ Hz and $W_B = 30$ Hz for H_{COOR}. The most accurate estimations were obtained from the data for H_{OH} signal.

The conformation A is somewhat preferred for compounds 4 and 5. Unexpectedly, 5A is more predominant than 4A. This difference may be attributed to the stronger electrostatic attraction between COOR groups in 4 (smaller ester groups can find a better rotational position for interaction), and/or to the stronger steric repulsion between COOR groups in 5, which is increased by solvation of polyether chains R with methanol molecules. On contrary, the crown ether 6 prefers the conformation 6B with both ester groups equatorial. This is apparently yet another manifestation of the 'contraction effect' of macrocycle.^{2–5,7,11,13–16,19}

Table 1. ¹H NMR data and conformational parameters

Compound and additives ^a	H _{OH}		H _N		H _{COOR(1)}		H _{COOR(2)}		$n_{\rm A}, \%$	$\Delta G_{\mathrm{B-A}}, \mathrm{kJ/mol}$
	δ	W, Hz	δ	W, Hz	δ	W, Hz	δ	W, Hz		
4	3.81	18.4	2.22	18.7	3.12	17.7	3.05	17.2	56	0.6
4 + AcOH	3.85	25.5	3.11	26.4	3.36	$\sim 12^{b}$	3.3	b	~ 100	>9
4 + KI	3.82	18.5	2.23	18.6	3.12	17.5	3.07	17.1	56	0.6
5	3.78	20.1	2.29	20.5	3.21	$\sim 17^{b}$	3.16	$\sim \! 17^{b}$	65	1.5
5 + AcOH	3.89	25.7	3.12	26.6	3.4	b	3.4	b	~ 100	>9
5 + KI	3.92	17.1	2.3	с	3.19	$\sim 19^{b}$	3.13	b	49	-0.1
5 + KI + AcOH	3.95	25.7	3.20	26.6	3.4	b	3.4	b	~ 100	>9
6	3.95	14.7	2.21	14.6	3.13	22.1	3.02	21.2	35	-1.5
6 + AcOH	4.01	25.4	3.20	$\sim 25^{\circ}$	3.4	b	3.4	b	~ 100	>9
6 + KI	4.12	12	2.27	с	3.2	b	3.2	b	20	-3.5
6 + KI + AcOH	4.01	25.1	3.22	26	3.45	11	3.40	11	95	7.5

^a In CD₃OD solution; AcOH and/or KI were added in large excess.

^b Partially or completely overlapped with other signals.

^c Poorly resolved multiplet.

Scheme 5.

Scheme 6.

As expected, all the studied structures demonstrate a dramatic switch to A conformation with excess acid (Table 1; Schemes 5 and 6). The power of this conformational trigger can be estimated from the measurements for compound **6** as ≥ 10.5 kJ/mol. Moreover, the acid-induced twisting of six-membered cycle in aminohydroxy steroids^{31,32} proves that the actual power of such triggers may be well above 20 kJ/mol.

Possessing two different binding sites, these compounds are interesting models for a negative allosteric effect. Presumably, the macrocycle in **6** and polyether chains in **5** should be able to form complexes with metal cations. Only conformations **5B** and **6B** provide the necessary geometrical arrangement for such complexation. Indeed, the conformational equilibria were shifted to these conformations when the methanolic solutions of **5** or **6** were saturated with KI (Table 1; Schemes 5 and 6). This effect was not strong—approximately 1.5-2 kJ/ mol. Addition of excess acetic acid to these solutions completely switched the equilibrium to alternative conformations **5A** and **6A**. The conformational equilibrium for compound **4** was reasonably indifferent to the addition of potassium salt.

Thus the *trans*-2-aminocyclohexanol moiety can be used for pH-induced conformational switching capable

to change the preferred conformation of various complexing agents thereby modifying their complexing ability. The strong conformational coupling of two different binding sites in compounds like 5 or 6 should allow the development of new heterotopic allosteric systems with high negative cooperativity, which may be especially useful for a selective membrane transport.

Acknowledgements

This research was supported by INTAS (Grant 94-1914) and the Russian Foundation for Basic Research (Grant 94-03-09296). We thank Prof. Dr. Hans-Jörg Schneider (Universität des Saarlandes, Saarbrücken, Germany) for helpful comments and discussion.

References and notes

- 1. Partially reported at *International Minisymposium* 'Modern Trends in Organic Chemistry—New Materials and Reaction Design', Universität des Saarlandes, Saarbrücken, Germany, 1997.
- Samoshin, V. V.; Subbotin, O. A.; Zelenkina, O. A.; Zefirov, N. S. Zh. Org. Khim. 1986, 22, 2231–2232 (Russ. J. Org. Chem. 1986, 22, 2004–2005).
- Samoshin, V. V.; Zelenkina, O. A.; Subbotin, O. A.; Zefirov, N. S. Zh. Org. Khim. 1987, 23, 1319–1320 (Russ. J. Org. Chem. 1987, 22, 1192–1193).
- Samoshin, V. V.; Zelenkina, O. A.; Yartseva, I. V.; Zefirov, N. S. Zh. Org. Khim. 1987, 23, 2244–2245 (Russ. J. Org. Chem. 1987, 23, 1984–1985).
- Samoshin, V. V.; Zelenkina, O. A.; Subbotin, O. A.; Sergeev, N. M.; Zefirov, N. S. *Zh. Org. Khim.* 1988, 24, 465–471 (*Russ. J. Org. Chem.* 1988, 24, 413–418).
- Samoshin, V. V.; Yartseva, I. V.; Zelenkina, O. A.; Zefirov, N. S. *Zh. Org. Khim.* **1988**, *24*, 2455–2456 (*Russ. J. Org. Chem.* **1988**, *24*, 2215–2216).
 Samoshin, V. V.; Zelenkina, O. A.; Yartseva, I. V.;
- Samoshin, V. V.; Zelenkina, O. A.; Yartseva, I. V.; Subbotin, O. A.; Zefirov, N. S. Zh. Org. Khim. 1988, 24, 2458–2459 (Russ. J. Org. Chem. 1988, 24, 2217–2218).
- Samoshin, V. V.; Zapol'skiy, M. E.; Lutsenko, A. I.; Zelenkina, O. A.; Zefirov, N. S. *Zh. Org. Khim.* **1989**, *25*, 651–652 (*Russ. J. Org. Chem.* **1989**, *25*, 586–587).
- Samoshin, V. V.; Zelenkina, O. A.; Zapol'skiy, M. E.; Vereshchagina, Ya. A.; Zefirov, N. S. Abstracts of 15th International Symposium on Macrocyclic Chemistry, Odessa, USSR, 1990; 182.
- Samoshin, V. V.; Zefirov, N. S. Abstracts of 16th International Symposium on Macrocyclic Chemistry, Sheffield, UK, 1990; ST30.
- Tsingarelli, R. D.; Shpigun, L. K.; Samoshin, V. V.; Zelyonkina, O. A.; Zapolsky, M. E.; Zefirov, N. S.; Zolotov, Yu. A. *Analyst* 1992, *117*, 853–856.
- Potekhin, K. A.; Struchkov, Yu. T.; Konoplyanko, N. V.; Samoshin, V. V.; Zefirov, N. S. *Dokl. Akad. Nauk* 1992, 326, 1007–1009.
- Samoshin, V. V.; Konoplyanko, N. V.; Lutsenko, A. I.; Zefirov, N. S. *Zh. Org. Khim.* **1992**, *28*, 867–869 (*Russ. J. Org. Chem.* **1992**, *28*, 668–669).
- Samoshin, V. V.; Vereshchagina, Ya. A.; Konoplyanko, N. V.; Lutsenko, A. I.; Zefirov, N. S. *Zh. Org. Khim.* **1993**, 29, 213–215 (*Russ. J. Org. Chem.* **1993**, 29, 183–184).
- Samoshin, V. V.; Vereshchagina, Ya. A.; Lutsenko, A. I.; Zefirov, N. S. *Zh. Org. Khim.* **1993**, *29*, 1095–1100 (*Russ. J. Org. Chem.* **1993**, *29*, 910–914).

- Troyansky, E. I.; Ismagilov, R. F.; Samoshin, V. V.; Strelenko, Yu. A.; Demchuk, D. V.; Nikishin, G. I.; Lindeman, S. V.; Khrustalev, V. N.; Struchkov, Yu. T. *Tetrahedron* 1995, *51*, 11431–11444.
- Samoshin, V. V.; Chertkov, V. A.; Vatlina, L. P.; Dobretsova, E. K.; Simonov, N. A.; Kastorsky, L. P.; Gremyachinsky, D. E.; Schneider, H.-J. *Tetrahedron Lett.* 1996, *37*, 3981–3984.
- Samoshin, V. V.; Bychkova, O. V.; Chertkov, V. A.; Shestakova, A. K.; Vatlina, L. P.; Simonov, N. A.; Kastorsky, L. P. *Zh. Org. Khim.* **1996**, *32*, 1104–1105 (*Russ. J. Org. Chem.* **1996**, *32*, 1066–1067).
- Samoshin, V. V.; Troyansky, E. I. Phosphorus, Sulfur, Silicon 1997, 120/121, 181–196.
- Samoshin, V. V.; Troyansky, E. I. Conformations of crown thioethers. *Abstracts of 213th National Meeting of the American Chemical Society*, San Francisco, USA, 1997; ORGN 354.
- 21. Raban, M.; Quin, J.; Belguise, A. Tetrahedron Lett. 1991, 32, 35–38.
- Raban, M.; Burch, D. L.; Hortelano, E. R.; Durocher, D. J. Org. Chem. 1994, 59, 1283–1287.
- 23. Costero, A. M.; Rodriguez, S. *Tetrahedron Lett.* **1992**, *33*, 623–626.
- Costero, A. M.; Rodriguez, S. Tetrahedron 1992, 48, 6265– 6272.

- Costero, A. M.; Villarroya, J. P.; Gil, S.; Aurell, M. J.; de Arellano, M. C. R. *Tetrahedron* 2002, *58*, 6729–6734.
- Berninger, J.; Krauss, R.; Weining, H.-G.; Koert, U.; Ziemer, B.; Harms, K. Eur. J. Org. Chem. 1999, 875– 884.
- Krauss, R.; Weining, H.-G.; Seydack, M.; Bendig, J.; Koert, U. Angew. Chem., Int. Ed. 2000, 39, 1835– 1837.
- Koert, U.; Krauss, R.; Weining, H.-G.; Heumann, C.; Ziemer, B.; Mügge, C.; Seydack, M.; Bendig, J. *Eur. J. Org. Chem.* 2001, 575–586.
- Weining, H.-G.; Krauss, R.; Seydack, M.; Bendig, J.; Koert, U. Chem. Eur. J. 2001, 7, 2075–2088.
- Karle, M.; Bockelmann, D.; Schumann, D.; Griesinger, C.; Koert, U. Angew. Chem., Int. Ed. 2003, 42, 4546– 4549.
- Schneider, H.-J.; Buchheit, U.; Gschwendtner, W.; Lonsdorfer, M. Steric Distortions and Polar Effects in Steroids: Molecular Mechanics Calculations and ¹³C NMR Investigations. In *Molecular Structure and Biological Activity*; Griffin, J. F., Duax, W. L., Eds.; Elsevier: New York, 1982; p 165.
- Kooijman, H.; Kelder, J.; Kanters, J. A.; Duisenberg, A. J. M.; Kroon, J. J. Chem. Soc., Perkin Trans. 2 1996, 2133–2140.
- 33. Eliel, E. L. Chem. Ind. 1959, 568.